Memetic Differential Evolution with an Improved Contraction Criterion
نویسندگان
چکیده
منابع مشابه
Memetic Differential Evolution with an Improved Contraction Criterion
Memetic algorithms with an appropriate trade-off between the exploration and exploitation can obtain very good results in continuous optimization. In this paper, we present an improved memetic differential evolution algorithm for solving global optimization problems. The proposed approach, called memetic DE (MDE), hybridizes differential evolution (DE) with a local search (LS) operator and peri...
متن کاملAn Improved Trigonometric Differential Evolution
Differential evolution is an efficient and powerful population-based stochastic technique capable of handling non-differentiable, non-linear and multi-modal objective functions. In order to improve its performance, this paper introduces a best-trigonometric mutation strategy and applies a crossover rate update strategy to the proposed algorithm. The performance of the proposed algorithm is inve...
متن کاملA Green Competitive Vehicle Routing Problem under Uncertainty Solved by an Improved Differential Evolution Algorithm
Regarding the development of distribution systems in the recent decades, fuel consumption of trucks has increased noticeably, which has a huge impact on greenhouse gas emissions. For this reason, the reduction of fuel consumption has been one of the most important research areas in the last decades. The aim of this paper is to propose a robust mathematical model for a variant of a vehicle routi...
متن کاملMemetic Search in Differential Evolution Algorithm
Differential Evolution (DE) is a renowned optimization stratagem that can easily solve nonlinear and comprehensive problems. DE is a well known and uncomplicated population based probabilistic approach for comprehensive optimization. It has apparently outperformed a number of Evolutionary Algorithms and further search heuristics in the vein of Particle Swarm Optimization at what time of testing...
متن کاملA Memetic Differential Evolution Algorithm with Adaptive Mutation Operator
Differential evolution algorithm has been widely used, because of its efficient optimization and no complex operation and coding mechanism. But DE falls into the local optimum easily. So this study puts forward a memetic algorithm. The algorithm can increase the diversity of population and jump out the local extreme value point effectively. The convergence speed of the algorithm is improved, be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2017
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2017/1395025